Learning Similarity with Operator-valued Large-margin Classifiers
نویسنده
چکیده
A method is introduced to learn and represent similarity with linear operators in kernel induced Hilbert spaces. Transferring error bounds for vector valued large-margin classifiers to the setting of Hilbert-Schmidt operators leads to dimension free bounds on a risk functional for linear representations and motivates a regularized objective functional. Minimization of this objective is effected by a simple technique of stochastic gradient descent. The resulting representations are tested on transfer problems in image processing, involving plane and spatial geometric invariants, handwritten characters and face recognition.
منابع مشابه
VC Theory of Large Margin Multi-Category Classifiers
In the context of discriminant analysis, Vapnik’s statistical learning theory has mainly been developed in three directions: the computation of dichotomies with binary-valued functions, the computation of dichotomies with real-valued functions, and the computation of polytomies with functions taking their values in finite sets, typically the set of categories itself. The case of classes of vect...
متن کاملA new vector valued similarity measure for intuitionistic fuzzy sets based on OWA operators
Plenty of researches have been carried out, focusing on the measures of distance, similarity, and correlation between intuitionistic fuzzy sets (IFSs).However, most of them are single-valued measures and lack of potential for efficiency validation.In this paper, a new vector valued similarity measure for IFSs is proposed based on OWA operators.The vector is defined as a two-tuple consisting of ...
متن کاملOnline Learning of Maximum p-Norm Margin Classifiers with Bias
We propose a new online learning algorithm which provably approximates maximum margin classifiers with bias, where the margin is defined in terms of p-norm distance. Although learning of linear classifiers with bias can be reduced to learning of those without bias, the known reduction might lose the margin and slow down the convergence of online learning algorithms. Our algorithm, unlike previo...
متن کاملWeighted Order Statistic Classifiers with Large Rank-Order Margin
We investigate how stack filter function classes like weighted order statistics can be applied to classification problems. This leads to a new design criteria for linear classifiers when inputs are binary-valued and weights are positive. We present a rank-based measure of margin that is directly optimized as a standard linear program and investigate its relationship to regularization. Our appro...
متن کاملMultiplicative Updates for Large Margin Classifiers
Various problems in nonnegative quadratic programming arise in the training of large margin classifiers. We derive multiplicative updates for these problems that converge monotonically to the desired solutions for hard and soft margin classifiers. The updates differ strikingly in form from other multiplicative updates used in machine learning. In this paper, we provide complete proofs of conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 9 شماره
صفحات -
تاریخ انتشار 2008